Image Manipulation Detection & Effects of Perspective Distortion on Face Identification

Delia McGarry Stephen Melsom

United States Department of State
Bureau of Consular Affairs
Consular Systems and Technology

DoS Face Initiatives

- Upgrading face recognition (FR) matcher
- Next generation passport with laser engraved polycarbonate data page
- Research
 - Image manipulation detection
 - Effect of perspective distortion on FR

DoS Face Recognition Operation

- ~45M applications annually for passports and immigrant, non-immigrant, and diversity visas
- Automated face recognition is conducted for all applicants

How to Obtain Optimal FR Version

- Upgrading FR matcher
- Multiple versions available from a given vendor
- As matchers evolve, so must test practices
- How DoS selects the optimal version
 - Define objectives
 - Choose metrics
 - Test on representative data
 - Perform sensitivity analysis
 - Communicate criteria and results with vendor
 - Select appropriate version for DoS' application

Performance variation on same dataset; six versions from same vendor.

~20 percentage point increase at an operationally relevant, low FAR

FR Test Objectives

- Gallery size independence
 - Estimate accuracy of system at scale
- Score AND rank matter
 - Candidate lists are managed by score and rank
- High TAR at very low FAR
 - Requires substantial number of impostor comparisons
- Must perform well on representative (constrained) data
- **Multiple mates matter!**

Choose Metrics

Common Metrics for Evaluation

	ROC	FPIR / FNIR / CMC ^{1,2}
Target Scenario (examples)	Find <i>all</i> mates (e.g., fraud detection)	Find <i>any</i> mate (e.g., watch-list)
Properties	Per-comparison credit Based on match scores	Per-search credit Based on rank and match scores
Weaknesses	Sensitivity to normalization Does not take rank into account	Sensitivity to normalization Dependent on N

- Best Practices for 1:N Testing
 - (Current): Requires execution of searches with and without mates^{1,2}
 - (Not Present): Guideline regarding the proportion of mated searches
 - (Not Present): Guideline regarding proportion of mates in test database
- ROC was chosen due to gallery size independence and credit for multiple mates
 - Run in identification mode
 - Count all impostor comparisons

Sensitivity Analysis – Data Type

- Hypothesis 1: some FR versions were trained and optimized on unconstrained imagery
- DoS travel documents are constrained
- Tested each version on constrained and unconstrained datasets

Constrained (Visas)

Unconstrained

Current FR Version

Identification ROCs for current FR version

Current version is optimized for constrained imagery

Version Upgrade Candidate

Identification ROCs for FR version submitted for upgrade

 Performance of this version <u>worsened for DoS constrained</u> but improved for unconstrained images

Sensitivity Analysis – Normalization

- Hypothesis 2: normalization based on incorrect assumptions about data caused poor performance in some versions
- Tested single version with different test configurations
 - Varied gallery size
 - Varied number of mates

- ROC maintained gallery size independence when only one genuine mate was in the gallery
- Performance significantly decreased when multiple mates were in the gallery
- Conclusion: vendor incorrectly assumed only one mate and implemented inappropriate normalization

Identification with Normalization

A 1:N matcher with gallery normalization may **boost high scores** and **suppress low scores** based on rank position.

Detecting Image Manipulation

Image manipulation is easy

No image processing or programming experience required

Mobile applications are available at little or no cost on all platforms

...but difficult to detect!

 Detectors must be customized to specific alterations

Goal: Automatically detect image manipulation with low false detect rate

Face Morphing Presentation Attacks

- Test and evaluation to understand the impact of morphing on automated Face Recognition
 - Data creation for a NIST evaluation of morphing detection algorithms
 - Analysis and development of automated detection methods

Face Blending Dataset

Types of imagery:

- lower quality, methods and means available to non-experts as mobile apps,
 1000+ images
- 2. higher quality, experienced artists using commercial digital art applications, 300+ images
- 3. automated methods based on academic research and best practices, 40K+ images

1. non-expert

2. artist

3. algorithmic

Automatic Morph Generation

Typical artifacts were mitigated

Detecting Morphed Images

- Automated detection of morphed images
 - Multiple models learned from underlying data distribution
 - Models utilize kernel-based, pair-wise comparisons and a random forest decision tree classifier
- Test & Evaluation
 - Initial results on 1.4K developmental sets
 - Overall: 74% classification accuracy*
- Next step increase number of models using large background face set

Model detection is per pixel; higher likelihoods shown as hotter colors

	Actual Morphed	Actual Original
Predicted Morphed		FP=164
Predicted Original	FN=201	TN=634

Effect of Stretching on FR

- Estimated ~12% of online visa applications are stretched
- May or may not be malicious
- Stretched images can severely impact the accuracy of **Face Recognition**

Unstretched

Matching performance *significantly* decreases following 10% stretch

When is Stretching Detectable?

- Deep learning approach uses convolutional neural network
 - Trained on "artificially" stretched visas
- Detection difficulty increases as stretch magnitude decreases

Stretch Detection Approaches

- Variety of stretch detection approaches are in development
- Results can be fused to increase detection accuracy
- Scanning images greatly increases the difficult to detect

Stretch Detection: Where to Look?

- Layer-wise Relevancy Propagation¹ (LPR) indicates regions where deep learning convolutional neural network concentrated
- LRP maximums appear within the ocular region

Unstretched

20% stretched

Stretched Images Mean LRP

Perspective Distortion

- Perspective distortion is the apparent warping of an object due to relative scale of nearby and distant features, (i.e., fisheye)
- Study motivated by ICAO Portrait Document camera distance specification
 - ISO/IEC/JTC1/SC17/WG3 study found minimal impact of camera distance on FR down to 0.5m (1:1, same day experiment)
- DoS conducted 1:1 and 1:N experiments with artificially distorted subjects

Simulated Perspective Distortion

- Perspective-aware Manipulation of Portrait Photos¹
- Steps to achieving a manipulative face model:
 - Detect 2D fiduciary landmarks (3 additional manually-placed landmarks are also required)
 - 2. Instantiate parameters we seek to minimize:
 - Identity vector
 - Expression vector
 - Rotation
 - Translation
 - Intrinsic camera matrix
 - 3. Fit the 2D landmarks to the 3D model using gradient descent
 - 4. Update **valid** 3D landmarks
 - 5. Manipulate distance and pose using parameters

Simulated Perspective Distortion (cont.)

- Algorithm enables users to simulate camera distance and head pose
- Assumes camera distance of 1m
- Distortion algorithm often fails when simulating camera distances below 0.4m
- Distortion algorithm evaluated with Caltech Multi-Distance Portraits dataset

Simulated

Actual

CMDP Dataset

- Caltech Multi-Distance Portraits
- Same-day portrait photographs taken from 7 camera distances
- 53 subjects
- 6ft images used as probe set while remaining images were enrolled into face recognition system

Testing Effects of Perspective Distortion

- Apply simulated perspective distortion to FERET dataset
 - Restricted to frontal, different-day mated subjects
 - 166 subjects
 - Simulated distances between 0.3m and 90m
 - Restricted experiments to 0.5m-5m
- Distorted images were grouped by simulated camera distance and enrolled into FR system with a background gallery of 1.5M visa images
- Original, mated images were used as probes

Original

0.3m Simulated

Verification Results: Simulated FERET

- Observe performance of perspective distortion algorithm
- 1:1 verification on same image between simulated distances

Original

0.3m Simulated

Identification Results: Simulated FERET

- Enroll individual groups of artificially distorted images into FR system with 1.5M background gallery
- Use original, "undistorted" images as probes

Identification Results: CMDP

Identification Results: CMDP

- Will similar levels of distortion between probes and impostors increase similarity scores?
- Impostor scores remained stable regardless of genuine mate's camera distance

CMC Results

 Using the camera distance simulation on this data did not affect identification performance

Perspective Distortion Experiment Conclusions

- Results warrant further investigation
- Why are the results ideal?
 - FR matcher pretrained on FERET data?
 - Unseen watermarking or artifacts?
 - Disparity between FERET dataset and visa images?
 - FR matcher may have a system in place to mitigate perspective distortion
- Next steps
 - Implement distortion algorithm
 - Process visa images with distortion algorithm
 - Rerun experiment

Conclusions

- Significantly improving FR accuracy by upgrading matcher
 - Achieving optimal version required defining objectives (e.g., finding multi-mates, operating point), representative testing, sensitivity analysis, communication of evaluation criteria to FR vendor
- Developing image manipulation detection algorithms to enhance travel document security
- Simulated effect of perspective distortion on FR identification to inform camera distance standards
 - FR was not adversely affected at camera distances as close as 0.5 m